If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+5x-35=0
a = 5; b = 5; c = -35;
Δ = b2-4ac
Δ = 52-4·5·(-35)
Δ = 725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{725}=\sqrt{25*29}=\sqrt{25}*\sqrt{29}=5\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{29}}{2*5}=\frac{-5-5\sqrt{29}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{29}}{2*5}=\frac{-5+5\sqrt{29}}{10} $
| 2(4x^2+7x)=3x^2=9x=35 | | 0.01x=100/x | | .04y-y=-192 | | 7y^2-2=5y^2+8 | | x²+9=45 | | 22y-6=62 | | 8q-12=154 | | 5x+4(2x-3)=12 | | -21x×-4=154 | | -6×-10y=12 | | 4x=4=12-4x | | 5(c-5)=4(c+1) | | 6x-1=5x+20 | | 15x+15=7x+63=4x | | 1/3(3/4x+5)+5/6x=-1/2 | | 2/5x-3/7=1/2(x+11/7) | | x=9=40 | | 8y-4=13y-8 | | 12.5-8.33x+x^2=0 | | 1-2(3x-1)=5(-2x+1) | | x+1/6x=5-27/12x | | 3/2x-45/6=x | | -5/6+3x=-17/4x+2/3 | | (4x-1)=2(6-2x) | | 12x2=6-x | | 6(3x/2-40=30 | | -1/3x-5/6=0 | | x3-6x2+7x-10=0 | | 2x+13=3(x-7) | | 4(3x+1)=6+9x | | 5x÷10=50 | | 18=6(x−10) |